skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fabi, Gianluca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. In this paper, an inverted scanning microwave microscope (iSMM) is used to characterize the channel of a gateless GaN/AlN high-electron-mobility transistor (HEMT). Unlike conventional SMM, iSMM allows for 2-port measurements. Unlike conventional iSMM, the present iSMM probe is connected to Port 1 of a vector network analyzer with the HEMT drain and source remain on Port 2. Under different DC biases VGS (applied through the iSMM probe) and VDS (kept constant at 1 V), changes in both reflection coefficient S11 and transmission coefficient S21 are monitored as the iSMM probe scans along the width of the channel, revealing significant nonuniformity. Additionally, changes in S11 and S21 are significant when VGS ≥ −4 V, but insignificant when VGS = −8 V, consistent with the measured threshold voltage at −6 V for a gated HEMT. These results confirm that iSMM can be used to locally modulate the channel conduction of a HEMT while monitoring its RF response, before the actual gate is added. In turn, the nonuniformity measured by the iSMM can be used to diagnose and improve HEMT materials and processes. 
    more » « less
  3. Currently, lacking suitable test structures, little data exist for the permittivity of hexagonal materials such as GaN and SiC at millimeter-wave frequencies, especially for the extraordinary permittivity ε || as opposed to the ordinary permittivity ε ⊥ . This paper demonstrates for the first time that it is possible to characterize ε || of c-axis 4H SiC using on-wafer measurements of substrate-integrated-waveguide resonators. In fact, measurements on eleven resonators yield a relative ε || of 10.27 ± 0.03 and a loss tangent tanδ<0.02 over the D band (110-170 GHz). The on-wafer measurements of resonators and other devices fabricated on the same SiC substrate can allow material property to be closely correlated with device performance. The present approach can be extended to materials of other types and orientations. 
    more » « less